Imperial College London Mathematics School Admissions Test Mark Scheme

Specimen Paper 2

Mark Scheme

Marking instructions

- Each question in sections A and B scores 2 marks for the correct answer or zero for no answer, the wrong answer or more than one answer.
- •
- For section C
 - M marks are for working and are given for a correct method, clearly shown even if there are some errors of arithmetic.
 - A marks are for the correct answer from correct working and can only be given if all the M marks so far in that part of the question have been earned.
 - B marks are independent marks.
 - Candidates may use any correct method; if this method is not in the mark scheme, award marks in a way that is as similar as possible to the methods shown in the mark scheme.

Section	Α
---------	---

Number	Solution	Mark	Guidance
			Either 2 or zero for each question on Section A.
1	C A circle of radius 3 cm	2	Example reasoning Area of A is 24, B is 25, C is 9π which is a little over 27, D is 27 and E is 8π
2	D $3\frac{1}{3}$ square units	2	Example reasoning When $x = 0$, $y = -2$. When $y = 0$, $x = \frac{10}{3}$ Area $= \frac{1}{2} \times 2 \times \frac{10}{3} = \frac{10}{3} = 3\frac{1}{3}$
3	$\mathbf{A} \ 2 \times 10^7$	2	Example reasoningThis can be rewritten as $\frac{32 \times 10^5 \times 45 \times 10^3}{72 \times 10^2}$.This simplifies to 20×10^6 .= 2×10^7 in SI form
4	D 9:4	2	Example reasoning PQR is similar to SQT with length scale factor $\frac{2}{3}$. Let the height of PQR perpendicular PR to be <i>h</i> . The height of SQT will be $\frac{2}{3}h$ and ST = $\frac{2}{3}$ PR. Area of PQR = $\frac{1}{2}$ PR <i>h</i> , area of SQT = $\frac{1}{2} \cdot \frac{2}{3}$ PR $\cdot \frac{2}{3}h$ = $\frac{1}{2} \cdot \frac{4}{9}$ PR <i>h</i> ratio 1: $\frac{4}{9}$ i.e. 9: 4
5	C £20	2	Example reasoning The youngest receives $\frac{4}{5} \times \frac{5}{6} = \frac{2}{3}$ of the eldest's amount $\frac{2}{3}e + \frac{5}{6}e + e = 50$ multiply by 6 4e + 5e + 6e = 300 giving $e = 20$
6	$\mathbf{D} \ 5 \times \frac{p^3}{10q^2} \times \frac{3}{(pq)^3}$	2	Example reasoning Considering indices for q: A is $q^{4-3} = q$, B is $q^{3-2} = q$, C is q, D is $q^{-2-3} = q^{-5}$, E is $q^{-3+5-1} = q$

Number	Solution	Mark	Guidance
7	A Their sum must be a multiple of 3	2	Example reasoning If the first number is <i>n</i> then the 3 consecutive numbers add up to $3n + 3$ This is a multiple of 3 for all <i>n</i> . Counter examples can be found for statements B , C , D e.g. B any even <i>n</i> , C any odd <i>n</i> , D $n = 2$ E cannot be true if A is true.
8	$\mathbf{A} \frac{1}{2}$	2	Example reasoning $P(3) + P(6) = \frac{1}{3}$, $P(2) = \frac{1}{12}$, $P(5) = \frac{1}{12}$ $P(2) + P(3) + P(5) + P(6) = \frac{1}{3} + \frac{1}{12} + \frac{1}{12} = \frac{1}{2}$ So $P(1) + P(4) = 1 - \frac{1}{2} = \frac{1}{2}$
9	B 4	2	Example reasoning The only points satisfying $x > 0$, $y > 0$ and $x + y < 5$ are $(1,1), (1,2), (1,3), (2,1), (2,2)$ and $(3,1)$ From these, all but $(1,2)$ and $(1,3)$ satisfy $y < 2x$ so there are 4 points
10	$\mathbf{B} \ 3\left(1-\frac{\pi}{4}\right)$	2	Example reasoning A quarter of the circle has area $\frac{\pi}{4}$. The small square, with side OQ, minus a quarter circle has area $1 - \frac{\pi}{4}$. There are two complete sections like this and two sections that are half of this making 3 sections in total so the total shaded area is $3\left(1 - \frac{\pi}{4}\right)$

Section B

Number	Solution	Mark	Guidance
			Either 2 or zero for each question on Section B.
11	D 20	2	Example reasoning
			If the elevation is in direction 1 the maximum number of cubes is $4 \times 3 + 2 \times 2 + 2 \times 1 + 1 \times 2 = 20$ From direction 2 it is $2 \times 3 + 2 \times 2 + 2 \times 1 + 3 \times 2 = 18$ From direction 3 it is $1 \times 3 + 2 \times 2 + 2 \times 1 + 4 \times 2 = 17$ From direction 4 it is $3 \times 3 + 2 \times 2 + 2 \times 1 + 2 \times 2 = 19$
12	C 6	2	Example reasoning For the numbers to still be prime when the digits are swapped, the tens digit must be 1, 3, 7 or 9. In the given range, the only primes that do this are 31 and 37. 37 - 31 = 6

Number	Solution	Mark	Guidance
13	E The country with the largest population won the most medals.	2	 Example reasoning A is not true as the smallest population (< 1 million) won 1 medal but the three larger countries from the table won 0 medals. B is not true as there are points showing smaller countries having more medals than some larger countries. C is not true as one country with just under 10 million population won 17 medals D cannot be a conclusion as relative wealth is not indicated E is true, the largest country with a population of 44 million won 20 medals (the most)
14	E 176	2	Example reasoning There are 11 numbers starting with 1 from 1 to 99 (1 and 10 – 19). Every number from 100 – 199 starts with 1 so there will be $11 + n - 99 = n - 88$ numbers starting with 1 from 1 to <i>n</i> (for the given values of <i>n</i>). $\frac{n-88}{n} = \frac{1}{2}$ gives $n = 176$
15	C Around the same amount of rain fell in Beijing in May, June and July of 2015 as fell in August September and October of 2015.	2	Example reasoning 1987 MJJ $\approx 2.1 + 3 + 3.5 = 8.6$ ASO $\approx 8 + 1.1 + 0.5 = 9.6$ Total 8.6 + 9.6 = 18.2 2015 MJJ $\approx 1.1 + 1.6 + 3.7 = 6.4$ ASO $\approx 2.8 + 3 + 0.6 = 6.4$ Total 8.6 + 9.6 = 12.8 A no, 8.6 < 9.6 B no, 18.2 $\neq 2 \times 12.8$ C yes, 6.4 = 6.4 (or close values) D no, 9.6 $\neq 6.4$ E no, not wettest in 2015

Number	Solution	Mark	Guidance
16	B 7	2	Example reasoning There is 1 way that the total of the first two digits is 1 (10) and 2 ways for the total of the last two digits to be 1 (10 and 01) giving 1010 and 1001 For a total of 2: 1 way for the first two (11) and 3 for the last two (20, 11 and 02) giving 1120, 1111, 1102. For a total of 3: 1 way for the first two (12) and 2 for the last two (12 and 21) giving 1212, 1221. Giving $2 + 3 + 2 = 7$
17	$A 2^2 \times 3 \times 5^2$	2	Example reasoning 6000 does not divide by 9 so eliminate B and D 4500 does not divide by 8 so eliminate C The two remaining options have $2^2 \times 3$ as factors Dividing all three by $(2^2 \times 3) = 12$ gives 450, 375, 500 All are divisible by 25 but 450 is not divisible by 125 so eliminate E. Alternatively hcf(5 400, 4 500, 6 000) = $2^2 \times 3 \times 5^2$
18	E 120	2	Example reasoning The sequence is $(n + 1)^2 - 1$ (can cut up and reassemble to $n + 1$ sided squares with a 1×1 square missing) $(10 + 1)^2 - 1 = 121 - 1 = 120$

Number	Solution	Mark	Guidance
19	E 100	2	Example reasoning Let a be the number of starfish, b the number of shrimp and c the number of octopuses a + b + c = 200 4a + 6b + 8c = 1400 4a + 6b + 8c = 1400 6a + 6b + 6c = 1200 -2a + 2c = 200 c - a = 100
20	B 25%	2	Example reasoning $\frac{1}{a} - \frac{1}{b} = \frac{3}{5} \left(\frac{1}{a} + \frac{1}{b} \right)$ $\frac{5}{a} - \frac{5}{b} = \frac{3}{a} + \frac{3}{b}$ $\frac{2}{a} = \frac{8}{b}$ $2b = 8a$ $a = \frac{1}{4}b$

Section C

Number	Solution						Mark	Guidance
	Alternati $d = 2 \sin d$	ve metho $45^{\circ} = \sqrt{2}$	bd				A1	Award if d is stated as $\sqrt{2}$ or the correct length is marked as $\sqrt{2}$ on a diagram. Allow $\frac{2}{2}$ for $\sqrt{2}$.
	(alternativ	vely $d = 2$	2 cos 45 ° c	or $2d^2 = 4$	4)			$\sqrt{2} + \sqrt{2} + \sqrt{2}$
	Shaded a	area = 4 >	$\times (2 \times \sqrt{2})$	$) + 4 \times \left(\frac{1}{2}\right)$	$\times \sqrt{2} \times \sqrt{2}$	2)	M1 A1	M1 evidence of splitting shaded shape into rectangles and triangles. A1 if these are correct.
			= 4 + 8	$\sqrt{2}$ cm ²			A1 B1	Allow equivalent using $\frac{2}{\sqrt{2}}$ for $\sqrt{2}$ i.e. $4 + \frac{16}{\sqrt{2}}$
								Allow ft from incorrect area. B1 for correct units.
							[5]	
22 a)	If the red dice is a 2 then the other 2 must sum to 4, 7 or 10			Award 3 marks for all 12 correct possibilities listed with no incorrect possibilities				
	B + Y	B + Y = 4 $B + Y = 7$ $B + Y = 10$		B + Y = 4 $B + Y = 7$ $B + Y = 10$			Award 2 marks for 9 - 11 correct possibilities	
	В	Y	В	Y	В	Y		Award 1 mark for 5 - 8 correct possibilities
	1	3	1	6	4	6		
	2	2	2	5	5	5	B3	
	3	1	3	4	6	4		
			4	3				
			5	2				
			6	1				

Number	Solution			Mark	Guidance
22 b)	For B + Y For B + Y For B + Y The only B + Y B 1 2 3 4 5 6	X = 4, R + 4 X = 7, R + 4 X = 7, R + 4 X = 10, R + 4 ones that X = 7 Y 6 5 4 3 2 1	B + Y = 6 B + Y = 9 + B + Y = 12 give a square number are $B + Y = 7$	B2	Award 2 marks for all 6 correct possibilities listed with no incorrect possibilities Award 1 mark for 3 - 5 correct possibilities or ft selecting correct possibilities from their answer to (a)
				[ວ]	

Number	Solution	Mark	Guidance
23 a)	$1 + 2 + 3 + \dots + 12 = 78$	A1	
23 b)	The sum of the 4 edges will use the numbers 10, 11, 12 and <i>n</i> twice and everything else once $(1+2+3+\dots+12)+10+11+12+n$ = 78+33+n = 111+n	M1 A1	M1 for using the corner values twice A1 for correct simplification to $111 + n$
23 c)	The total along each edge is the same and must be an integer. There are 4 edges hence the overall sum is a multiple of 4.	B1	Any correct explanation that identifies that the total for each side can be found by dividing by 4.
23 d)	$\frac{111+n}{4} = 27 + \frac{n+3}{4}$ n+3 is a multiple of 4 n+3 = 4 gives $n = 1n+3 = 8$ gives $n = 5n+3 = 12$ gives $n = 9The next value would be greater than 12.$	M1 A2	M1 for any correct strategy (using the equation shown or by trying values for n) A2 for identifying all 3 correct values for n A1 for identifying 2 of the correct values for n

23 e)	For $n = 1$ the total along each edge is $27 + \frac{4}{4} = 28$ The available numbers to complete the square once the corners have been inserted are 2, 3, 4, 5, 6, 7, 8 and 9. The left hand column starts with a 12 and finishes with 11 so the other two numbers must add up to 5. This can only be done using the 2 and 3. The top row starts with a 12 and ends with a 10 so the other two numbers add up to 6. None of the remaining numbers will do this so $n = 1$ does not work.	B1	Any correct explanation identifying that the 4 totals can not be made using the values available
	For $n = 5$ the total along each edge is $27 + \frac{8}{4} = 29$ The available numbers to complete the square once the corners have been inserted are 1, 2, 3, 4, 6, 7, 8 and 9. The left hand column needs 6 more to make this total. This can only be done using the 2 and the 4. The top row needs 7 more to make 29. This must use the 6 and the 1. The right hand column needs 14 more to make 28. No pair of numbers from the remaining digits (3, 7, 8 and 9) add up to 14 so $n = 5$ does not work.	B1	Any correct explanation identifying that the 4 totals can not be made using the values available
	For $n = 9$ the total along each edge is $27 + \frac{12}{4} = 30$ The available numbers are 1, 2, 3, 4, 5, 6, 7 and 8. The left hand column needs 7 more to make 30. This can be done using the 6 and the 1. The top row needs 8 more to make 30. This can be done using the 5 and the 3. The right hand column needs 11 more to make 30. This can be done with the 7 and the 4. The bottom row needs 10 more to make 30. This can be done using the 8 and the 2. n = 9 is the only one that works.	B1	Confirming correctly that $n = 9$ does give a possible solution.
		נינין	